
Project: Plant Ground Support Equipment - Scope & Goal

- Starpath's Plant... in Space
- Goal: Enable the Plant to be tested on Earth in an analogous Lunar environment

• Allocated Budget: \$75k, Timeline: 3.5 mo.

Defining Requirements

• Cooling Requirements

- To accommodate the 3 Plant Subsystems, as a stand-in for Space Radiator
 - Extraction: 5kW <50C
 - Conversion: 30kW <50C
 - Liquefaction: 3.3kW <0C

• Vacuum Requirements

- Performance of valves proportional to pressure difference
- 0.12 mol/s H2 leak rate = 5.7CFM
- >leak rate + margin for quick pump down time

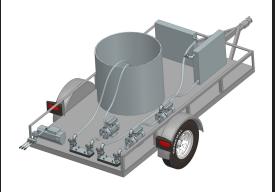
• Power Requirements

- PEM Stack (electrolyzer, conversion): 60kW 200VDC
- Other electronics: 10kW 120VDC

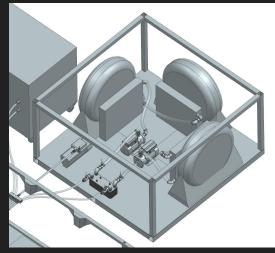
• Skid Requirements

- Safely contain Cooling, Vacuum Subsystems
- Transportable to Plant Test location
- Aesthetically appealing for external stakeholder demo

Requirements

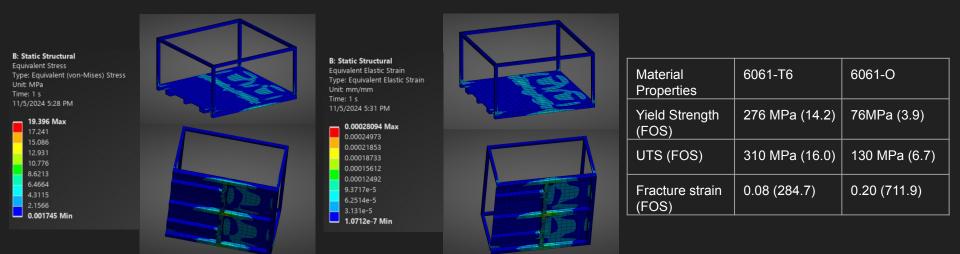

System		Plant 2				
Subsystem		Ground Support Equipmen				
RE		Conor Zacha				
Updated		11/7/2024				
Requirements 🗸	Ē					
# Number	~	Category ~	Statement	~	Source ~	
	0	systems	Subsystem shall supply 60kW @ 200VDC and 10kW @ 120VDC to Box 1		czachar	
	1	systems	Subsystem shall supply a minimum of 35kW of cooling power <50C and 3.3kW <0C		czachar	
	2	systems	Subsystem shall supply a near-vacuum of <0.01bar and pump at least 10CFM		czachar	
	3	build	Subsystem shall cost less than \$75,000 in hardare/operational expenses		allocated, sys.12	
	4	environmental	Subsystem shall be transportable to/from test location		czachar	
	5	systems	Subsystem shall be of an appearance to inspire the public		flowed down, sys.10	
	6	systems	Subsystem shall not interfere with Rover or Tower installations		flowed down, sys.4	
	7	build	Subsystem shall complete testing on/before December 20, 2024		derived, sys.11	

Skid - Concept Selection


- Size
 - Footprint driven by cooling loop size, 3-4 m²
- Material
 - Criteria: cost, manufacturability, strength, safety, aesthetics
 - Chosen Material
 - Al 6061 (σy: 276 MPa (T6), 76 MPa (0), ρ: 2.70 g/cm3)
 - Advantages: cost, easy MIG weld, FEA indicates sufficient strength, nonflammable, good aesthetics
 - Drawbacks: warping while welding, see setup
 - Considered
 - Wood: (MOR: 40MPa, ρ: 0.6 g/cm3)
 - lowest cost, weight, but lacking in strength, flammable, aesthetic concerns
 - Low Carbon Steel (σy: 250MPa, ρ: 7.9 g/cm3)
 - higher strength but heavier, requires finishing (corrosion), challenges welding

- Concept
 - Chosen Concept
 - Welded skid & frame: in-house manufacturing saves cost, compact & customizable form factor
 - Considered
 - Trailer: enables on-road transportation* but adds cost, bulkier less efficient footprint

*Deleted requirement, unnecessary as complete build & test of the Plant to be done at Starpath HQ. Instead, pallet jack/forklift compatibility incorporated into design


Trailer: evaluated concept

Skid: chosen concept

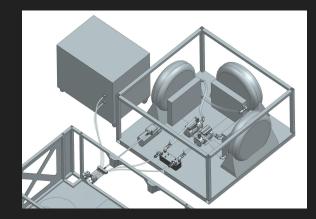
Skid - Detailed Design

- 6' x 6' to accommodate cooling loop, vacuum line
- Pallet jack compatible
- Aluminum 6061
- FEA: Fixed @ Forklift Mounts, 4000N downward force applied across platform

Skid - Build

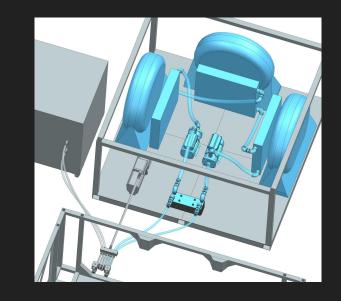
- Materials
 - Thickness selected for strength & ease of weld
 - 4x 36"x36"x1/4" plates
 - ¹/₈" rectangular tubing
- MIG Welded
- Aluminum perforated sheets + self-tapping screws

Welded frame


Full skid w/ perforated sheet enclosure

Weld setup: Bottom view

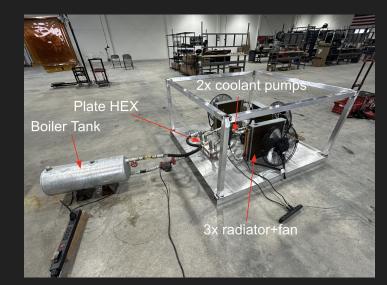
Cooling - Concept Selection


- Heat capacity & temperature requirements
 - Conversion + Extraction: 35kw <50C
 - Liquefaction: 3.3kW <0C
- Design decision: separate 2x cooling loops
 - Provide high heat capacity cooling at a higher temp for conversion & extraction
 - Lower heat capacity, lower temp for liquefaction cooling
- Conversion & Extraction Loop
 - Concept selected: Air-to-water heat exchangers
 - Use ambient air temp to cool below 50C
 - Low cost, low complexity, reliable
 - Considered: Heat Pump
 - Not selected due to higher cost & complexity
- Liquefaction Loop
 - Concept selected: Low Temp chiller
 - Found off-the-shelf within spec, reliable & customizable cooling
 - Evaluated: Immersion cooling
 - Copper pipes + ice bath
 - Not feasible due to test length requirements

Ambient Temp Cooling - Design Details

Requirement: 35kW cooling, ~100C -> <50C

- Air-To-Liquid HEX in Series
 - Specced for heat capacity, dT, see subscale test
 - Coolant pumps in series to offset head loss
- Plate HEX
 - Compact, efficient
- Sensing: calculate Q*=m*c∆T
 - K Type Thermocouples, breakout boards
 - Optimal within 0-100C range
 - 10V Flowmeter
 - Voltage compatible w/ Arduino (for test) & Plant brain



Max Cooling needed			3x 20"x20" HEX		
Water Thot (plant)	373	ĸ	<u>v</u> *	3	GPM
N /			V*	0.00018927058	9 m3/s
Water Tcool (plant)	323	К	d_pipes	0.00953	m
cp water	4.186	kJ/kgK	A_pipes	0.000071	
mass flow rate	0.15	kg/s	v h20	2.65622	m/s
Required Qlost, plant	31.395	kW	# pipes/row	3	i i
Temp change of working fluid			rows	20	I
cp working fluid (water)	4.186	kJ/kgK	# HEX	3	
V* working fluid	3	gal/min	I_row	0.5588	m
- V			I_pipes	100.584	m
V* working fluid	11.34		friction factor	0.0200	
m* working fluid	0.189	kg/s	p_h20	1000.00	ka/m3
Plate HEX efficiency	0.90		ΔΡ	745.0599518	
dT required, working fluid	44.09	к	ΔΡ		ft head

Ambient Temp Cooling - Build

Requirement: 35kW cooling, ~100C -> <50C

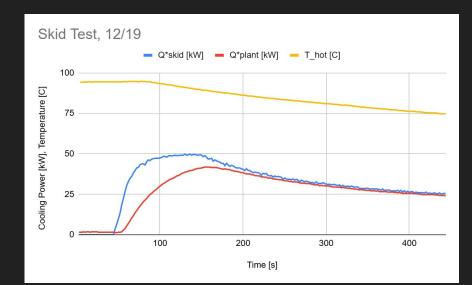
- Subscale test
 - Boiler tank
 - 15gal Tank + 2x 5kW heating elements
 - Heating could not be scaled further due to power constraints at the time, safety considerations (arcing @ high current, gap between conductors)
 - Setup with 1x HEX
 - Indicated HEX cools @ approx 50% of nominal capacity, 95C-> 50-60C
 - Decision for 3x in series: anticipating decrease in efficiency but increase in dT
- Build
 - 3x 40kW HEX in series
 - NPT fittings & liquid hydraulic thread sealant to prevent leaks

Full test setup

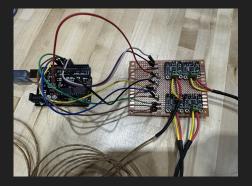
Max Sustainable C	2*	
V_boilertank	15	gal
V_boilertank	56.781	L
Tmax	100	С
Tfinal	30	С
c_H20	4.187	kj/kgC
Qmax	16641.99	kJ
t_test	0.2	hr
Q*_heaters	10	kW
Q*max sustained	33.11	kW

Subscale test setup

Test limitations


Ambient Temp Cooling - Test

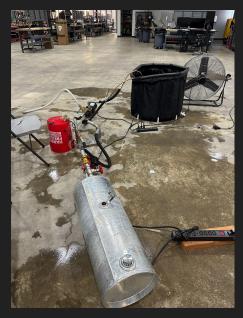
Requirement: 35kW cooling, ~100C -> <50C


- 40 kW peak
- Performs best at higher dT
 - Planned plant input of 100C is ideal
 - \circ Test limitation: setup can only heat at 10kW, max
- Tcool Maintained <40C

Cooling loop

Cooling capacity of cooling loop

Arduino & perfboard for data collection


Low Temp Cooling - Initial Design

Requirement: 3.3kW cooling, <0C

- Initial Design: Immersion Chilling
 - 30m copper tubing
 - Saltwater ice bath
- System wide requirements changed: 3hr test to 15hr
 - Deemed infeasible due to volume of ice required
 - Hand calcs: Lf ice not suitable for 45kWh
 - LN2- lower temps easily achievable, but mass not feasible

Variable	value	unit
Copper Tubes		
HEX_e	0.8	
V*	3	GPM
m*	0.1892705	kg/s
Q*	3.75	kW
c_h20	4.184	kJ/KgK
dT_h20	4.73539992	к
Tcold_pipes	270	к
Thot_pipes	274.7353999	к
Tbath	270	к
dT_m	2.36769996	к
U_copper	2	kW/m2K
A_req	0.791907772	m2
d_pipe	0.0127	m
l_req	19.84821147	m

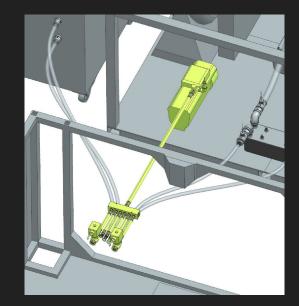
Length tubes required *Q=UAdT*

Immersion cooling setup

Ice Required			LN2 Required		
Q*	3.3	kw	Q*	3.3	kw
t	15	h	t	15	h
Q*	49.5	kWh	Q*	49.5	kWh
Lf_ice	334	kj/kg	Lf_LN2	199	kJ/kg
Lf_ice	0.093	kWh/kg	Lf_LN2	0.0552	kWh/kg
m_ice_req	532.26	kg	m_LN2	896.74	kg
minV_cubedice_req	1064.516129	L			
minV_cubedice_req	281.2153548	gal			
% loss, to ambient	50	%			
V_cubedice_req	562.4307097	gal			

Immersion fluid required

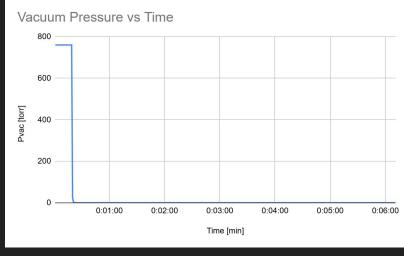
Low Temp Cooling - Design Details


Requirement: 3.3kW cooling, <0C

- Cooling capacity
 - 5.07 kW @ -2.5C
 - 3.58kW @ -12.2C
- Fluid
 - 50% ethylene glycol (antifreeze)
- Operation
 - 34 NPT Inlet/Outlet
 - 208-240VAC input, 37A max current draw
 - Use 240V welding plug

Vacuum - Concept Selection & Design

- Vacuum requirements
 - Near-perfect vacuum applied to valves, <0.01bar
- Concept Selected: Vacuum line: roughing pump, hoses, manifold, solenoids
 - Enables high CFM (offset H2 leak rate), minimize leaks from vacuum pump
- Considered: vacuum chamber
 - No added utility: relief valves the only vac-rated hardware
 - Adds pump down time, valves spaced around wide area, seals interfere with Plant functions
- Hardware
 - 12 CFM roughing pump, 4E-5 bar minimum Pvac
 - Flow control: on/off via solenoid valves
 - Ball valves considered, but remote operation desired for safety
 - Manifold, fittings, hoses
 - NPT, pneumatic-rated liquid thread sealant (Loctite 545)
 - Sensing
 - Vacuum gauge



T = V/S * In(P1/P2)

Pump dow time - hoses				Pump down time - chamber		
Length of piping		10	m	Volume of piping	1.00000	m^3
Diameter of piping		0.0127	m	Initial pressure	1	atm
Volume of piping		0.00127	m^3	Final pressure	1.00E-04	atm
Initial pressure		1	atm	Pump speed	12	CFM
Final pressure		1.00E-04	atm	Pump speed - leak rate	6	CFM
Pump speed		12	CFM	Pump Speed	0.0028	m3/s
Pump speed - leak	rate	6	CFM	Pump down time	3252.606	s
Pump Speed		0.0028	m3/s			
Pump down time		4.120	s			

Vacuum - Build & Test

- Min vacuum pressure: 0.075 torr = 1E-4bar
- On/off via solenoids

Test results

Subsystem - Power

Requirement: 60kW @ 200VDC, 10kW @ 120VDC

Starpath HQ Breaker 5x 480VAC 3phase 25A

DC Power Supplies

4x 18kW 200VDC 1x 18kW 120VDC

Plant

72kW @ 200VDC 18kW @ 120VDC

*notes:

- 90kW total power
- Each 18kW supply can be fine-tuned between 0-600VDC
- Rental Jan 1 Feb 28 for budget considerations